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Measuring molecular diffusion is widely used for characterizing
materials and living organisms noninvasively. This characterization
relies on relations between macroscopic diffusion metrics and
structure at the mesoscopic scale commensurate with the diffusion
length. Establishing such relations remains a fundamental chal-
lenge, hindering progress in materials science, porous media, and
biomedical imaging. Here we show that the dynamical exponent
in the time dependence of the diffusion coefficient distinguishes
between the universality classes of the mesoscopic structural com-
plexity. Our approach enables the interpretation of diffusion
measurements by objectively selecting and modeling the most
relevant structural features. As an example, the specific values
of the dynamical exponent allow us to identify the relevant
mesoscopic structure affecting MRI-measured water diffusion
in muscles and in brain, and to elucidate the structural changes
behind the decrease of diffusion coefficient in ischemic stroke.

Amacroscopically uniform sample of a biological tissue, porous
rock, or composite material appears incredibly complex at the

mesoscopic scale. This scale, typically of the order ∼ 0:1 to 10  μm,
is intermediate between the microscopic scale of molecular
dimensions, where material properties such as the local diffusion
coefficient originate, and the macroscopic sample dimensions or
imaging resolution. Quantifying the mesoscopic complexity non-
invasively is important in the physical sciences for characterizing
artificial and natural samples, and in the life sciences for di-
agnosing diseases, such as stroke and Alzheimer’s, that manifest
themselves at a cellular level.
Measuring molecular diffusion, e.g., of water, in such media

has emerged as a universal noninvasive structural probe (1–8).
Obtained with techniques ranging from single-molecule track-
ing (3) to diffusion-weighted MRI (dMRI) (4), macroscopic
diffusion metrics are sensitive to the nominally invisible micron-
level sample architecture, thanks to the diffusion length, i.e., the
rms molecular displacement LðtÞ= hδx2ðtÞi1=2, providing the
mesoscopic length scale. However, a challenging ill-posed
problem (1, 2, 9) has long been to quantitatively interpret a
bulk diffusion measurement, i.e., to convert this manifestly
sensitive metric into specific mesoscopic structural parameters,
such as geometric properties of pores or biophysical parame-
ters of cells.
Characterizing structure below a nominally achievable imaging

resolution requires a structural model that predicts the result of
the bulk measurement; by comparing the measurement to the
prediction, the model parameters may be quantified. At the most
basic level, a model is a rough sketch which captures the most
essential parts of the structural complexity while neglecting the
rest. Given the inherently irregular, or disordered nature of most
specimens, a key challenge is to adequately and parsimoniously
represent structural disorder.
Here we advocate that there are only a handful of qualitatively

distinct ways to draw such sketches. More formally, we classify
media based on the distinct types of long-range spatial correlations
at the mesoscale, which we call “structural universality classes”
(Figs. 1 and 2). The concept of universality is borrowed from
statistical physics. In our context, it signifies the global simi-
larity between different structurally complex samples that
emerges at large distances whenever samples are sufficiently

coarse-grained, such that local differences between members of
each class become inessential. Technically, a universality class
is determined via the two-point structure correlation function
ΓðrÞ, in terms of the value of the structural exponent p in the
ΓðkÞjk→ 0 ∼ kp behavior of its spatial Fourier transform ΓðkÞ
(Figs. 1 and 2).
Remarkably, we find that the most basic diffusion metrics, such

as the velocity autocorrelation function and the time-dependent
diffusion coefficient, can distinguish between the structural uni-
versality classes, based on the key relation

ϑ= ð p+ dÞ=2 [1]

(Materials and Methods; see also SI Text, Section I and Fig. S1).
The relation 1 between the dynamical exponent ϑ characterizing
diffusion in the long-time limit, and the structural exponent p
which determines the structural universality class in d spatial
dimensions, relates the measurement and the structure, and
allows one to determine the most appropriate kind of model
based on the measurement. By using our framework, we identify
the relevant mesoscopic structure affecting water diffusion mea-
sured with MRI in muscles and in brain, and elucidate the cor-
responding mesoscopic changes providing clinically relevant
dMRI contrast in ischemic stroke.
The relation 1 expresses an idea that molecular diffusion at

long time t, i.e., large diffusion length LðtÞ, preserves the
footprint of the underlying structural complexity. This foot-
print is reflected in the exponent ϑ describing the decay of
the temporal correlations (memory) in the molecular velocity
autocorrelation function
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DðtÞ≡ hvðtÞvð0Þi∼ t−ð1+ϑÞ;   ϑ> 0: [2]

Practically, the power law tail 2 can be identified in the way the
time-dependent instantaneous diffusion coefficient

DinstðtÞ≡ ∂
∂t

�
δx2

�
2

=
Z t

0

dt′ Dðt′Þ ’ D∞ + const · t−ϑ [3]

approaches the finite bulk diffusion constant D∞. The quantity
DinstðtÞ is accessible with techniques (3, 4) measuring the mean-
square molecular displacement hδx2ðtÞi in a particular direction
(Eqs. 4–6).
The relation 1 provides a way to determine the exponent p

and, thereby, the structural universality class, using bulk diffusion
measurement. Local properties may affect the coefficients, e.g.,

the values of D∞ and of the prefactor of t−ϑ in [3], but not the
exponent ϑ. The latter is robust with respect to variations
between samples of a similar origin, such as due to biological
variability. This picture is akin to critical phenomena (10), where
the phase transition temperature is nonuniversal (sensitive to
short-scale details), while the critical exponents distinguish, based
on global symmetries, between the universality classes of long-
range fluctuations.

Examples of Structural Universality Classes
Fig. 1 illustrates how diffusion distinguishes between the uni-
versality classes via the relation 1 in the d= 1 dimension. The
Monte Carlo (MC)-simulated diffusion is hindered by the
permeable barriers with mean density n= 1=a and permeability
κ (Materials and Methods). The universality classes, realized
here by the different ways of arranging the same 40,000 bar-
riers (sample cutouts shown in Fig. 1A), exhibit distinct structural
exponents p in the barrier density correlator (Fig. 1B), which result
in the distinct exponents 1 (Fig. 1C).

Order.Any periodic arrangement (such as Fig. 1, red) is reflected
in the Bragg peaks in ΓðkÞ, with Γ≡ 0 for k below the minimal
reciprocal lattice vector, formally corresponding to p=∞. As the
coarse-graining beyond the lattice constant does not increase
the structural fluctuations, DðtÞ decays and DinstðtÞ reaches D∞
exponentially fast, formally corresponding to ϑ=∞ (i.e., faster
than any inverse power law); see also SI Text, Section IIE.
Structural disorder comes in qualitatively different ways.

Short-Range Disorder. Short-range disorder is arguably the most
common disorder class, and it serves as a good reference point. It
is characterized by a finite correlation length lc, beyond which
the correlator ΓðrÞ decreases sufficiently fast, which corresponds
to the finite plateau in ΓðkÞjk→ 0 = const> 0, and the structural
exponent p= 0, similar to the Poissonian disorder (uncorrelated
restrictions). Finite correlation length means that, at larger dis-
tances, the variance of the number of restrictions scales in pro-
portion to their mean number in a given volume, consistent with
the central limit theorem. In Fig. 1 (blue), we chose each suc-
cessive interval am between barriers independently from the
distribution PðaÞ with mean a= 1=n and finite variance σ2. This
results in the finite plateau Γjk→ 0 = σ2=a3, as calculated in

A

B

C

Fig. 1. Time-dependent diffusion distinguishes between structural univer-
sality classes in one dimension, represented here by the placement of iden-
tical permeable barriers with the same mean density. (A) Order (red),
hyperuniform disorder (green), short-range disorder (blue), and strong dis-
order (magenta) are shown. (B) The barrier densities have qualitatively dif-
ferent large-scale fluctuations, reflected in the small-k behavior of their
density correlator ΓðkÞ∼ kp (see Examples of Structural Universality Classes).
(C) Numerical results confirming the relation 1. The time-dependence 3
clearly distinguishes between the four arrangements, while the value D∞ is
the same for all of them. The dashed lines are the exact power laws from
Eqs. S14, S19, and S23, and the exponential decrease is from the exact so-
lution, Eq. S25. Strong disorder occurs for 1< μ< 2; here μ= 7=4.

A B

C

D

E

Fig. 2. Structural universality classes in dimension d > 1. (A and B) The
examples of analogs of the d = 1 classes, corresponding to Fig. 1 (blue and
red). (C–E) The extended universality classes inherent to d > 1. (C) Random
membranes, with representatives shown for d = 2 and d = 3, result in ϑ = 1/2
for any d. (D) Random rods, with a representative shown for d = 3, result in
ϑ = 1 for any d. (E) Structure correlator Γ(k) ∼ kp (numerically calculated and
angular averaged, arbitrary units) for C (magenta in d = 2 and green in d = 3),
and for D (gray), exhibits the negative structural exponent p = –ds.
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SI Text, Section IIB. Hence, ϑ= 1=2 (Fig. 1C). Likewise, in d
dimensions, short-range disorder in the placement of local
restrictions to diffusion would correspond to ϑ= d=2, according
to Eq. 1.

Hyperuniform Disorder. Hyperuniform disorder (11, 12) is charac-
terized by reduced long-range fluctuations, with the variance in the
number of restrictions in a given domain increasing slower than
the domain volume (sub-Poissonian statistics), reflected in p> 0
and ϑ> d=2. In Fig. 1, we displaced the barriers from their posi-
tions in a regular lattice by independent random shifts leading to
ΓðkÞjk→ 0 ∼ k2, such that p= 2 (Fig. 1B), yielding ϑ= 3=2 (Fig. 1C)
according to [1]; see also SI Text, Section IID.

Strong Disorder. One can imagine an opposite situation of long-
range fluctuations enhanced relative to the short-range disorder;
let us call it “strong disorder.” Structural fluctuations growing
faster with volume than prescribed by the central limit theo-
rem are reflected in a diverging Γjk→ 0, i.e., the exponent p< 0,
such that ΓðrÞ∼ 1=r p+d decreases slower than 1=rd in d dimensions.
This would lead to the exponent ϑ< d=2 (weak self-averaging). In
Fig. 1 (magenta), we used the Levy (fat tail) distribution
PðaÞ∼ 1=a1+μ with 1< μ< 2 for the successive barrier intervals,
such that the mean interval is finite, but the variance hða− aÞ2iP
diverges. Our choice of μ= 7=4 yields p= μ− 2=−1=4 and
ϑ= ðμ− 1Þ=2= 3=8 in agreement with Eq. 1 (see SI Text, Section
IIC for derivation).

Higher Dimensions. As already indicated, the above universality
classes are also present in higher dimensions d> 1. Short-range
disorder in the placement of any kind of finite-size restrictions
yields the structural exponent p= 0, leading to the short-range
disorder in the (sufficiently coarse-grained) local diffusion co-
efficient DðrÞ, such as shown in Fig. 2A for d= 2. The short-range
disorder in DðrÞ yields (13, 14) the exponent ϑ= d=2 in agreement
with Eq. 1. All ordered (periodic) arrangements of permeable or
impermeable restrictions to diffusion in any d (e.g., Fig. 2B) are
characterized by the vanishing ΓðkÞ for sufficiently small k, for-
mally corresponding to p=∞, and yielding an exponentially fast
decay of the memory in diffusion, ϑ=∞. (Paraphrasing ref. 15,
ordered structures are all alike; every disorder class is disordered
in its own way.) The hyperuniform disorder comes with different
p> 0. When the restrictions are independently displaced away
from the lattice sites, p= 2 in any d. The value p ’ 1 occurs for
a maximally random jammed state in d= 3 (12). We note that Eq.
1 provides a means to observe the jamming transition, from p= 0
at low packing density, to p ’ 1, via measuring diffusion in-
between packed hard spheres.

Extended Disorder Classes. These disorder classes (Fig. 2 C and D)
are inherent to d> 1. They open up a natural way to realize
strong disorder, with diverging ΓðkÞ (Fig. 2E) corresponding to
p< 0 and ϑ< d=2 without a need to invoke a Levy distribution
(as had to be done in Fig. 1). A negative p can be achieved by
placing regular structural components (e.g., infinite lines, planes)
with dimensionality ds < d, in a random fashion, in which case
p=−ds (a negative integer), the structural correlator ΓðrÞ∼ 1=r d−ds
decays slower than 1=r d, and 2ϑ corresponds to their codimension
d− ds. The first such example (16) is the extended disorder re-
alized by random permeable hyperplanes, ds = d− 1 (Fig. 2C),
resulting in ϑ= 1=2 in any d. Likewise, randomly placed and ori-
ented rods, ds = d− 2, embedded in d= 3 dimensions (Fig. 2D)
would realize p=−1 and ϑ= 1< 3=2. For the structural compo-
nents with finite extent lc, the disorder becomes short-ranged, p→ 0
and ϑ→ d=2, when the diffusion length exceeds their size (the
correlation length lc).

Generalizations and Discussion. The examples in Fig. 1 already
demonstrate that selecting the right global sketch of mesoscopic
structure is essential, and that diffusion measurement provides
an objective way of doing so. This should be contrasted with
comparing small fragments (e.g., Fig. 1A, blue and green); the

hyperuniform fragment may as well seem locally more disordered
than the short-ranged one. However, diffusion unequivocally
determines that the large-scale fluctuations in the blue sample are
qualitatively stronger than in the green one, leading to a slower
decrease of DinstðtÞ (Fig. 1C), confirming the relation 1.
Of course, from a long-time measurement it is impossible to

deduce how exactly a given structural universality class is realized
at short distances. Instead of thin barriers in Fig. 1, we could
have chosen finite intervals with a different diffusion coefficient,
or smooth variations of local diffusion coefficient DðxÞ, realizing
the same low-k behavior of ΓðkÞ. Likewise, the lines, planes, or
rods from Fig. 2 C and D could be structurally complex at short
distances. The information deduced about the global organiza-
tion should practically complement our knowledge about the
mesoscopic structure and the dimensionality d, as illustrated in
the subsequent in vivo examples.
Above, we assumed that the molecules (the random walkers)

can spread everywhere. When impermeable boundaries split the
space into disconnected parts, Eq. 1 applies separately to the
contribution from each part, which then add up. The most rele-
vant disorder contribution is the one with the smallest ϑ, yielding
the slowest power law tails 2 and 3.

Extended Disorder Provided by Muscle Fiber Walls
In Fig. 3, we analyze the time dependence of diffusion tensor
eigenvalues in the fresh ex vivo muscle tissue samples measured by
Kim et al. (17). The nondispersive eigenvalues λ1 correspond to the
unrestricted diffusion along the fibers. The transverse components
λ⊥ðtÞ in the d = 2 fiber cross-section (Fig. 3C) are strongly dis-
persive. Representing the data as function of t−1=2, we observe the

A B

C D

Fig. 3. Time-dependent diffusion transverse to muscle fibers from ref. 17
reveals extended structural disorder class of ds = 1 in d =2, provided by the
muscle fiber membrane (sarcolemma). (A) The longitudinal, λ1, and the trans-
verse, λ⊥ = ðλ2 + λ3Þ=2, diffusion tensor components for calf tongue genio-
glossus (TG) (blue circles) and heart (H) (red diamonds). Solid lines are the fit
of λ⊥ðtÞ to DðtÞ derived from Eq. S27 with d = 2. For fit results see Table S1. (B)
Data for λ⊥ðtÞ replotted as function of t−1=2 consistent with ϑ= 1=2. Eq. 1 yields
p=−1; hence, ds = 1 (see Extended Disorder Provided by Muscle Fiber Walls
and Fig. 2C). (C) Muscle slice across the fibers. (D) ΓðkÞ calculated from image
intensity in C. Tight cell packing achieved by straight cell walls in C results in
exponent p=−1 of the extended disorder class of Fig. 2C, yielding ϑ= 1=2.
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asymptotic tail 3. Indeed, the fit of λ⊥ðtÞ to Eq. 5 yields ϑ≈ 0:5 for
both tongue and heart (Fig. S2), exemplifying weak self-averaging,
ϑ< d=2, in contrast to ϑ= 1 expected for the d= 2 short-range
disorder. We thus conclude that the restrictions to water diffu-
sion are strongly spatially correlated on the scale of the diffusion
length (up to ∼ 30  μm in this measurement), which puts them
into the extended disorder class of Fig. 2C with ds = 1 in d= 2.
In SI Text, Section III, we argue that the relevant restrictions

are in fact muscle cell membranes (sarcolemma), and quantify
their permeability and cell size (Table S1). The good agreement
between the fit parameters and histological values can be ratio-
nalized by comparing a typical histological slice transverse to
muscle fibers (Fig. 3C) with the random barriers in two dimen-
sions (Fig. 2C). Tight packing of muscle cells makes the fiber
walls fairly flat and spatially correlated even over length scales
exceeding typical fiber diameter, resulting in strong extended
structural correlations, ΓðkÞ∼ 1=k, within the plane transverse to
the fibers, as shown in Fig. 3D calculated from the intensity
profile of Fig. 3C. Hence, the dynamical exponent 1 establishes
the effect of permeable cell walls on the dMRI signal.

One-Dimensional Short-Range Disorder in the Brain
We now turn our focus to brain. An important early observation
(18) is the almost twofold decrease in the water diffusion co-
efficient minutes after brain injury. Measured at times t∼ 100 ms
when any residual time dependence in brain is small, the drop in
the diffusion coefficient D∞ is now used clinically as a non-
invasive diagnostic marker for acute ischemia (19). However, the
biophysical origin of this phenomenon has remained under de-
bate for over two decades. A closely related challenge is to
identify the dominant restrictions or cell mechanisms which de-
termine water diffusion in healthy brain.
Here, we address these two related questions by focusing on the

Fourier transform DðωÞ (Eq. 6) of the velocity autocorrelation
function 2 in rat cortical gray matter. We observe that the real part
ReDðωÞ measured by Does et al. (20) with oscillating gradients (4)
exhibits the ϑ= 1=2 dispersion (Fig. 4A) in the whole frequency
range, ω=2π ≤ 0:5  kHz, in a fairly isotropic brain region.
This value of ϑ is striking. It is different from the naive ϑ= 3=2

for the fully random (uncorrelated) medium in d= 3 dimensions
(similar to Fig. 2A). It tells that either the structure is highly
correlated, p=−2 (such as in Fig. 2C) or the effective dimension
of some tissue compartments is below 3 (which is favored ana-
tomically; Fig. 4B). Another important observation is that the
value ϑ= 1=2 does not change following the onset of ischemia.
By identifying the ϑ= 1=2 exponent, we reduce the problem of

the origin of the diffusion slowdown in stroke, that could occur due

to a myriad of reasons, to focusing on which structural changes
affect the diffusion along randomly oriented narrow neurites
(dendrites and axons). The effective dimension d= 1 is maintained
by neurite walls; ϑ= 1=2 yields p= 0, short-range disorder along the
neurites (Fig. 4B), so that the universality class is that of Fig. 1 (blue).
The extraneurite water contributes ϑ= 1 (as in Fig. 2D) which is less
relevant: since jωj1 + jωj1=2 ∼ jωj1=2 as ω→ 0, its effect in the dis-
persive ReDðωÞ is overshadowed by that of intraneurite water.
Our argument incidentally confirms that the neurites are effectively
impermeable on the time scales relevant for the measurement (20).
(Notable exchange would have destroyed the d= 1 contribution,
yielding an overall ϑ= 1, not supported by the data in Fig. 4A.)
The disorder, for the dendrites, may include spines, variations in

thickness (“beads”) and in local directionality on the ∼ 1 μm scale
(21); for the axons, the synaptic boutons (varicosities) separated (22)
by 3 to 6  μm. Our short-range disorder prediction is remarkably
consistent with the measured variance in the varicosity number
within a window growing in proportion to the mean within this
window (22), a defining signature of the p= 0 exponent. Ischemia
causes beading, i.e., more pronounced varicosities in both dendrites
and axons (23, 24), which is likely to increase the disorder.Any short-
range disorder increase would cause the increase in the prefactor
in theω1=2 contribution toDðωÞ according toEq. 7, and the decrease
in D∞ (Eq. S7), both consistent with the data in Fig. 4A.
We underscore that it is focusing on the functional form of the

dispersion, rather than on a single number D∞, that allows us to
clarify the origin of a complex biophysical phenomenon. Our ap-
proach validates the picture of neurites as effectively impermeable
channels (25–28) and adds to it a crucial piece, the short-range
disorder. The increase of disorder along neurites as a reason be-
hind D∞ decrease is consistent with the neurite beading shown to
reduce D∞ under a mechanical stress in parallel ex vivo axons (29),
as well as with intraaxonal diffusion coefficient decrease in human
stroke (30). Certainly, there could be factors other than beading
that could add to the short-range disorder along neurites, and its
increase in stroke. The ϑ= 1=2 dispersion disfavors commonly
discussed alternatives such as active streaming breakdown, swelling
of cell bodies, and increase in the cytoplasmic viscosity as primary
contributions to D∞ decrease.
The present framework may stimulate more focused inves-

tigations of ischemic stroke, as well as of other neurological dis-
eases. In particular, one may correlate the time- or frequency-
dependent diffusion with morphological changes during status
epilepticus and electrical activation (31) and severe hypoglycemia
(32) also known to reduce the value of D∞. The change in the
number and morphology of neurite varicosities in Alzheimer’s
disease (33) should result in changes both in D∞ and in the
magnitude of the ω1=2 dispersion.

Conclusions
In this work, we have connected the dynamical exponent 1 to
global structural organization, to study mesoscopic structure with
noninvasive diffusion measurements. This framework is particu-
larly useful for biological tissues. While biophysical parameters
may vary strongly and continuously between samples, the expo-
nent ϑ takes fixed values determined by the disorder universality
class, and it is robust with respect to the biological variability. As
a result, we have identified the dominant role of cell membranes
restricting water motion in muscles, and have argued for an in-
crease in the structural short-range disorder along the neurites as
a cause of the diffusion coefficient decrease after ischemic stroke.
We believe the proposed classification of structural disorder may
help identify and quantify the dominant types of restrictions in other
living tissues, as well as in diffusion or heat or electrical conduction
in composite materials, porous media, and other structurally com-
plex samples. Extending this classification to quantum (34) or wave
(35) transport could tie rich physics of localization to the types of
global structural organization at the mesoscale.

Materials and Methods
Diffusion Metrics. The fundamental quantity, the velocity autocorrelator 2, is
often difficult to measure directly. Instead, there exist a number of

A B

Fig. 4. Dispersive DðωÞ in cerebral gray matter consistent with d = 1 diffusion
along narrow neurites in the presence of short-range disorder ðp= 0Þ, both in
normal and globally ischemic rat brain. (A) Original data (20) for d-sin and cos
gradient waveforms, fitted to Eq. 6, yields ϑ= 0:50± 0:07 for normal and
ϑ= 0:49± 0:05 for postmortem brain. The role of the disorder (the slope)
increases after global ischemia onset. (B) Varicose axons from rat hippocampus
area CA1 (22) rationalizing the picture of an effectively 1D diffusion inside
narrow randomly oriented and structurally disordered neurites.
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equivalent time- or frequency-dependent diffusion metrics, with rela-
tions between them described in refs. 36 and 37. To interpret various kinds
of diffusion measurements, such as dMRI results (17, 20), here we outline
how the power law tail 2 manifests itself in these metrics. We assume the
sample to be statistically isotropic, so that the diffusion metrics are isotropic
tensors, and the correlation functions depend on r = jrj and k= jkj. Gener-
alization to the anisotropic case presents no conceptual difficulty, but makes
the presentation more cumbersome.

The instantaneous diffusion coefficient DinstðtÞ defined in Eq. 3 is the nat-
ural metric to study structural correlations, as it quantifies how the spreading
of a packet of random walkers is hindered by the mesoscopic structure at the
time scale t. From our perspective, it is a perfect quantity to determine the
exponent ϑ. However, this is not the most commonly used metric in practice.

The most commonly reported diffusion coefficient

DðtÞ≡ Æδx2ðtÞæ
2t

=
1
t

Zt

0

Dinstðt′Þdt′ [4]

describes the dynamics of the cumulative, rather than instantaneous, mean-
squared displacement along a particular direction x̂ over the diffusion time t.
This is the case both in the dMRI (4, 17) and in the direct molecular tracking
techniques (3). This definition has a perceived advantage of dividing by time,
rather than differentiating with respect to it; clearly, differentiating increases
the noise, while dividing does not.

The definition 4 may mask the exponent ϑ. Indeed, its long t behavior

DðtÞ ’ D∞ + const · t−
~ϑ,  ~ϑ=minfϑ,1g: [5]

In other words, for the tail 2 to be manifest in DðtÞ, it should be sufficiently
slow, ϑ≤ 1, so that it is unaffected by the averaging over the increasing in-
terval t in [4]. In the opposite case, ϑ> 1, the t−ϑ term in DinstðtÞ becomes
subleading to the 1=t term from the integral in [4] converging at short t.

Hence, to practically determine the dynamical exponent ϑ, one could first
check whether the fit to [5], using the less noisy definition 4, produces the value
~ϑ< 1. If it does (as in our example of diffusion transverse to muscle fibers), this is
the true value of ϑ= ~ϑ. In the opposite case, the fit would yield the 1=t tail, ~ϑ= 1,
which would mask the true value of ϑ> 1. Then, one must perform the differ-
entiation DinstðtÞ= ∂t ½tDðtÞ� and obtain ϑ from the fit to [3], with the un-
fortunate effect of amplifying the measurement noise, as shown by comparing
Figs. 1 and 5. Practically, this results in more stringent requirements on the signal-
to-noise ratio and on the greater number of experimental time points.

There is another useful way of uncovering the exponent ϑ, as long as ϑ< 2,
without the need to take a time derivative. The same power law tail

ReDðωÞ≡ 1
2
Æv−ωvωæ ’ D∞ + const · jωjϑ,  ω→ 0, [6]

persists in the dispersive diffusivityDðωÞ≡ R∞
0 dt   eiωtDðtÞ, which is the Fourier

transform of the retarded velocity autocorrelator 2. The physical meaning of
DðωÞ is in relating the current Jω,r =−DðωÞ∇rψω;r of the random walkers to
their density gradient (36), somewhat similar to the dispersive electrical

conductivity; it defines the pole of the diffusion propagator (see refs. 13, 14,
16, 36, and 37 and also the discussion in SI Text, Section I). Fortunately, there
exists a dMRI measurement protocol, the oscillating gradient technique (4,
20), which directly measures (37) ReDðωÞ. This is the quantity used in the
example of diffusion in cerebral gray matter (Fig. 4).

Derivation of Eq. 1: Homogenization. In this work, we consider the most
widespread situation, when a sample has a nonzero macroscopic diffusion
constant D∞ ≡ ½Æδx2æ=2t�t→∞, i.e., the diffusion asymptotically becomes
normal, or Gaussian. A well-defined macroscopic D∞, observed in an over-
whelmingly broad variety of mesoscopically heterogeneous samples, attests
to the robustness of the diffusion as a Gaussian fixed point with respect
to adding the structural complexity (disorder). In this case, a macroscopic
sample represents the disorder ensemble, i.e., the system is self-averaging
(38). Conversely, the absence of D∞, e.g., for fractals, near a percolation
threshold (2, 39), or for random drifts in one dimension (40, 41), signifies the
so-called anomalous diffusion (2) not considered here.

The general relation of the long-time behavior 2 and 3 to the mesoscopic
structure rests on the homogenization argument: at long diffusion time t,
the sample, as seen by random walkers traveling over a growing diffusion
length LðtÞ≡ Æδx2ðtÞæ1=2 ’ ffiffiffiffiffiffiffiffiffiffiffiffi

2D∞t
p

, appears increasingly more uniform due to
self-averaging. The sample is being effectively coarse-grained over LðtÞ, such
that the strong mesoscopic heterogeneity is gradually forgotten, and the
deviation δDðrÞ=DðrÞ−D∞ of the smoothly varying coarse-grained diffusion
coefficient DðrÞ from D∞ becomes small. This justifies calculating the self-
energy part of the disorder-averaged diffusion propagator only to the
lowest (second) order in the variable component δDðrÞ. Eventually, the
perturbative treatment around D∞ becomes asymptotically exact (as dis-
cussed in SI Text, Section I and Fig. S1) and the (small) deviation

DðωÞ−D∞

D∞
’ −

iω
D2

∞d

Z
ddk

ð2πÞd
ΓDðkÞ

−iω+D∞k2 [7]

is given in terms of the Fourier transform ΓDðkÞ=
R
ddr  e−ikr   ΓDðrÞ of the two-

point correlation function ΓDðrÞ= ÆδDðr0 + rÞδDðr0Þæ in d spatial dimensions.
Using the relation between DðωÞ and DinstðtÞ,

DinstðtÞ=
Z

dω
2π

e−iωt
DðωÞ

−iðω+ i0Þ [8]

(which can be derived using the cumulant expansion; cf. ref. 36), we obtain

DinstðtÞ−D∞ ’ 1
dD∞

Z
ddk

ð2πÞd
ΓDðkÞe−D∞k2t : [9]

Equivalently, the last equation can be recast in the form

DinstðtÞ ’ D∞ +
1

dD∞
· ÆðδDÞ2æjLðtÞ, [10]

where ÆðδDÞ2æjL is the variance of the Gaussian-smoothed values δDðrÞjL =R
ddr′  δDðr+ r′Þe−r′2=L2

.
ðπL2Þd=2. In other words, the diffusion effectively

applies a low-pass filter e−k
2L2=4 to the Fourier components of DðrÞ and, thus,

to its correlator ΓDðkÞ, admitting harmonics with progressively smaller
wavenumbers kK 1=LðtÞ. As the variance ÆðδDÞ2æjL ∼ L−2ϑ decreases due to
the smoothing, the measured diffusion coefficient DinstðtÞ monotonically
decreases toward D∞. The power law exponent 1 is then directly related to
the dimensionality d and to the exponent p which determines the k→ 0
behavior of ΓDðkÞ∼ kp.

We are interested in the spatial correlations ΓðrÞ= Ænðr0 + rÞnðr0Þæ of the
underlying mesoscopic structure nðrÞ responsible for the heterogeneity of
DðrÞ. Depending on the sample, nðrÞ may stand for the density of grains,
barriers, and other structural components that restrict diffusion (e.g., Figs. 1
and 2). This density is often strongly heterogeneous at the microscopic scale.
Certainly, the coarse-grained DðrÞ is not equal to the local average of the
strongly varying microscopic diffusion coefficient caused by nðrÞ. However,
the statistics of the large scale fluctuations of nðrÞ asymptotically approaches
that of the coarse-grained DðrÞ, such that for k→0

ΓDðkÞ ’ CðnÞ ·ΓðkÞ,  CðnÞ= ð∂D∞=∂nÞ2: [11]

This asymptotically local relation rests on the self-averaging assumption
which ensures the smooth dependence D∞ðnÞ on the sample mean n= ÆnðrÞæ
of the restrictions. Hence, after coarse-graining, a typical small local fluctu-
ation δDðrÞ ’ ð∂D∞=∂nÞδnðrÞ becomes asymptotically proportional to the
typical small local fluctuation δnðrÞ=nðrÞ−n, as long as the self-averaging
assumption holds. (Conversely, singular dependence D∞ðnÞ, e.g., at the

Fig. 5. Cumulative diffusion coefficient, Eq. 4, for the 1D example of Fig. 1.
Dashed lines correspond to the asymptotic power law decrease of DðtÞ. For
ϑ= 1=2 and ϑ= 3=8 (blue represents short-range disorder and magenta strong
disorder), the power law in DðtÞ coincides with that in DinstðtÞ (in accord with
Eq. 5) whereas for ϑ> 1 (red represents periodic and green hyperuniform), it
is masked by the 1=t term. Taking the derivative Dinst = ∂tðtDðtÞÞ reveals the
values of ϑ (as shown in Fig. 1) but increases noise.
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percolation threshold, is associated with the lack of self-averaging.) In this
way, the exponent p characterizes long-range correlations in the sample’s
mesoscopic structure, ΓðkÞ∼ΓDðkÞ∼ kp, and becomes accessible with a time-
dependent diffusion measurement via the relation 1.

Strong self-averaging in d dimensions occurs when the variance ÆðδDÞ2æjL
decreases as the inverse diffusion volume L−d , such as for short-ranged dis-
order ðp= 0Þ, or faster, as for order or hyperuniform disorder ðp>0Þ. Weak
self-averaging corresponds to the decrease ∼ L−2ϑ with a smaller power,
0< ϑ<d=2. For p≤ −d, very strong fluctuations destroy self-averaging,
a sample does not represent a disorder ensemble, the macroscopic D∞ is
undefined, and the present approach fails. Diffusion becomes anomalous
(2), with mean-squared displacement Æδx2ðtÞæ∼ t2=z as t→∞ characterized by
the dynamical exponent z≠ 2 (see, e.g., refs. 39–41).

MC Dynamics. For each disorder class in Figs. 1 and 5, MC simulated random
walks of 4× 106 random walkers evenly split between 40 disorder realizations
of N= 1,000 barriers each, were used to average Æδx2æ over the paths and over
the ensemble. The total length of each realization could be either smaller or
larger than N  a since barrier intervals were random (as described in SI Text,
Section II). The trajectory of each random walker was a sequence of moves in
a randomly chosen direction over a distance dx =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D0dt

p
= 0:008  a during

a time step dt, where D0 is the unrestricted (free) diffusion constant. This
choice of dx � a ensured that the free diffusion was well simulated within
each interbarrier interval, i.e., the effects of the finite step dx at the scale of
interbarrier separation were already negligible. In this way, the added bar-
riers can be viewed as restrictions, or “disorder,” for the free 1D diffusion.

The barrier permeability κ (the dimensions of velocity) determines the
dimensionless disorder strength (16),

ζ =nD0=κ,  n= 1=a: [12]

Keeping the same a, D0, and κ for all disorder classes yields the same mac-
roscopic diffusion constant

D∞ðnÞ= D0

1+nD0=κ
≡

D0

1+ ζ
, [13]

an exact result in d = 1 irrespective of the barrier placement (16, 42). As an
illustration, in Fig. 1 we chose ζ =1, which yields D∞ =D0=2, for all disorder
classes. Incidentally, in tissues often ζ ∼ 1 (see, e.g., Table S1).

Transmission across a barrier occurredwith probability ∝ κdx=D0 � 1 (43). The
total diffusion time was 100τr , corresponding to a maximum of 1:5625× 106

time steps per random walker, where

τr =V=κS ≡ a=2κ [14]

is the mean residence time within an average interbarrier interval charac-
terized by its surface-to-volume ratio S=V = 2=a. The MC results were care-
fully verified to yield the exact result for D∞ (with better than 1% accuracy),
as well as using the exact result for DinstðtÞ for the periodic barriers (com-
paring Eq. S25 and the red curve in Fig. 1C). The random walk simulator was
developed in C++. Simulations were carried on the New York University
General Cluster, using 120 central processing unit cores simultaneously,
within a total time of about 10 h per each disorder class.

To obtain DinstðtÞ in Fig. 1, the time derivative in Eq. 3 was calculated
using the Savitzky–Golay smoothing procedure written in Matlab (Math-
Works), with the sixth order polynomial interpolation over a window in-
creasing with t to suppress the MC noise that becomes relatively more
pronounced at longer diffusion times.
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